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Abstract--Numerical models are used to understand the evolution of mode I (opening) fractures from spatially 
random distributions in a brittle elastic material. En 6chelon arrays commonly develop because mechanical 
fracture interaction promotes growth for this geometry. This provides a new mechanism for en 6chelon vein 
formation in rock which is distinctly different than previously proposed mechanisms. It is suggested that some 
macroscopic en 6chelon vein arrays may have served as zones of weakness that localized later shear zone 
development in a manner analogous to that observed by experimentalists examining micro-cracking and 
subsequent shear rupture of rocks loaded under compression. Sigmoidally shaped veins and vein fillings are 
explicitly modeled showing that they can form in response to the mechanical interaction of neighboring fractures 
which redirects the propagation path. Numerical comparison of sigmoidal veins formed by brittle fracture and by 
ductile shear zones demonstrates some of the pitfalls of failing to correctly identify the mechanism of formation. 

INTRODUCTION 

TRADITIONALLY, e n  6chelon veins have been attributed 
to an applied shear deformation: the experiments of 
Riedel (1929) and Cloos (1955) showed how these struc- 
tures might form. The experiments involved building a 
clay cake over two parallel boards. As one board was slid 
past the other, simulating a narrow fault, a broad zone of 
shear deformation and fracturing developed in the over- 
lying clay cake. If water was sprinkled liberally on the 
surface of the clay cake, opening fractures (referred to 
by different authors as 'tensile', 'dilatant', or 'extensio- 
nal' fractures or 'tension gashes') formed along the fault 
line, oriented approximately 45 ° from the fault trend 
(Fig. la). Due to passive rotation of the central portion 
of fractures in the deformation zone and continued 
growth at the fracture tips, sigmoidal shapes sometimes 
formed (Fig. lb). 

Shainin (1950) described vein systems in the Athens 
limestone of Virginia which he inferred were formed by 
the action of a shear couple on an incipient shear failure 
plane. The maximum compressive stress direction was 
interpreted to be the acute bisectrix between conjugate 
vein arrays. Shainin concluded that the veins were 
'tensile' fractures having initiated on planes approxi- 
mately 45 ° from the shear zone boundary. Shainin ob- 
served that shear offset across the zones was common 
and suggested the sigmoidal shapes of some veins indi- 
cated rotational deformation within the zone due to 
shearing. Wilson (1952) described similar geometric 
features in quartz veins of the Moine Series of Scotland, 
and concluded that interlayer slip during folding applied 
shear couples to the rock layers, resulting in en Echelon 
'tension gashes' forming at acute angles to layer bound- 
aries. 

Roering (1968) observed that many en 6chelon vein 
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Fig. 1. Illustration of clay cake experiments of Riedel (1929) and Cloos 
(1955). (a) Clay cake being deformed over two displacing boards, 
simulating a buried fault. The shear displacement of the 'fault' trans- 
lates into a broad zone of deformation in the clay, causing tension 
gashes oriented at about 45 ° to the applied shear motion (when the clay 
is wet). (b) Finite rotation in the deformation zone causes the central 
portion of the tension gashes to rotate through an angle to while 
continued propagation at the fracture tips maintains about a 45 ° angle 
with the zone boundaries, resulting in sigmoidally shaped fractures. 

arrays exhibit no measurable shear offset and suggested 
that veins may pre-date shear zone formation. He 
rejected an earlier idea that these en 6chelon veins were 
responding to a modified local (secondary) stress state 
caused by shear zone formation (Shainin 1950, Wilson 
1952, Cloos 1955). Instead, Roering claimed that the 
veins he observed could be directly related to the remote 
(primary) stress state as a type of 'shear' fracture. In 
contrast, Lajtai (1969) asserted that there must be a pre- 
existing zone of weakness such as a shear zone in order 
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to localize veins in en echelon arrays. He  concluded that 
veins form as 'tension' fractures aligned with the local 
stress field within a shear zone so they cannot be used 
directly to infer remote stress directions. However ,  
Lajtai interpreted the sigmoidal shape of some veins to 
indicate growth outside the boundary  of a shear zone 
and inferred that the tips of these veins would most  likely 
be aligned with the remote stress directions. 

Hancock (1972) accepted Lajtai 's  shear  zone hypoth-  
esis and went on to classify en Echelon veins into three 
failure categories based on their vein-array angle, 6 (Fig. 
2). He proposed that fractures analogous to those de- 
scribed by Riedet (1929) f rom his clay experiments ,  
termed 'Riedel shears', form at 10-20 ° to a shear zone. 
'Transitional shear-extension' fractures form at 20-40 °, 
and 'extension'  fractures form at 40-45 ° . Beach (1975) 
narrowed the categories of en Echelon veins to two: (1) 
'shear '  fractures that form after the shear zone; and (2) 
' tensile'  fractures that localize in arrays independent  of 
shear zones due to an unspecified mechanism.  Accord- 
ing to Beach, the shear fractures should be parallel to the 
trend of the adjacent conjugate array,  although he 
admitted that later rotations may obscure this relation- 
ship. The 'tensile' fractures were hypothesized to have 
small vein-array angles, but again it was allowed that the 
angles may vary due to later shearing and rotation. 

Ramsay (1980) used a kinematic analysis to explain 
the variation in vein-array angles. Ins tead of relying on a 
change in failure mechanism as p roposed  by Beach 
(1975), he interpreted the vein geomet ry  variations as an 
outgrowth of volume changes super imposed on simple 
shear deformation. Ramsay suggested that shear zones 
with positive dilatation (A v > 0, Fig. 3a) should exhibit 
< 45 ° while those with negative dilation (A v < 0, Fig. 3b) 
should have 6 > 45 °. Arrays formed during simple shear 
alone should have 6 = 45 °. Rickard & Rixon (1983) 
applied Ramsay 's  theory to certain field observations 
and also postulated that some shear zones were made up 
of hybrid 'extensional/shear '  fractures as predicted by 
failure envelopes on a Mohr  diagram,  an interpretat ion 
similar to that of Hancock (1972). Yet  Rickard & Rixon 
rejected the hypotheses of Roer ing (1968) and Beach 
(1975) that the veins can be pr imary ' shear '  fractures. 

Lajtai (1969), Rickard & Rixon (1983), and many 
others have considered en Echelon veins to form only as 
a result of shear zone deformation.  However ,  Pollard et 

al. (1982) proposed a mechanism for en Echelon arrays 
with modest  vein-array angles that is independent  of 
shear zones. Based on experiments  by Sommer  (1969), 
they called upon a temporal  or spatial rotation of the 
principal stress field about  an axis parallel to the propa-  
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Fig. 2. En Echelon array with three veins. L is vein length, S is 

separation and 6 is termed the vein-array angle. 
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Fig. 3. Inferred dependency of vein-array angle on bulk shape 
changes and dilatation, hv (after Ramsay & Huber 1987, fig. 26.42). 
(a) Stretching and shortening, Av > 0, shear zones with small vein- 
array angles, 26 < 90 °, no pressure solution. (b) Stretching and 
shortening, Av < 0, shear zones with large vein-array angles, 26 > 90 °, 

significant pressure solution. 

gation direction of a 'd i la tant '  parent  fracture. The 
loading scheme used by S o m m e r  achieves this rotation 
by a torque applied to a rod in axial tension (Fig. 4a). 
This corresponds to a mixture of  mode  I (opening) and 
mode I I I  (shearing parallel to the fracture tip) loading 
(Lawn & Wilshaw 1975). Since 'di latant '  fractures tend 
to grow in a principal stress plane,  this stress rotation 
requires some rotat ion of each successive increment of 
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Fig. 4. Experiment of Sommer (1969). (a) Tension and torque applied 
to glass rod with embedded penny-shaped fracture. The loading on the 
crack is mixed mode I-III in the terminology of engineering fracture 
mechanics. (b) Resulting crack propagation, showing breakdown of 

parent crack into rotated en Echelon segments. 
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fracture growth. Due to energy constraints (Pollard et al. 

1982), the parent fracture (Fig. 4a) breaks down into en 
Echelon segments (Fig. 4b) in a manner similar to twist 
hackle and fringe joints (Woodworth 1896, Hodgson 
1961, Bankwitz 1965). Possible examples of this mech- 
anism for vein formation are described in Knipe & 
White (1979), Granier (1985) and Shaoxun & Xiao- 
shuang (1988). Delaney & Pollard (1981) and Pollard et 

al, (1982) also have applied this concept to the interpre- 
tation of en Echelon dikes. 

Pollard et al. (1982) proposed that some features 
supposed to be diagnostic of vein arrays in shear zones, 
such as sigmoidal shapes, shear displacement of the 
vein-wall, and apparent shear offset across the array, 
can result simply from 'dilatant' fracture growth. A 
method to confirm this hypothesis has been developed 
by Craddock & van der Pluijm (1988) using detailed 
petrofabric analysis of vein-filling material. They exam- 
ined the strain variation in an array of sigmoidal 'tension 
gashes' that change laterally into a single continuous 
vein. They concluded that the sigmoidal shapes were 
due to vein propagation in a locally varying stress field 
caused by mechanical fracture interaction. They found 
no evidence to support the more traditional interpre- 
tation of growth at the vein tips aligned with the remote 
stress directions and finite rotations of the vein centers 
within a 'shear zone'. 

Rothery (1988) recently proposed a new classification 
system for en Echelon veins. His data, collected from the 
Lower Carboniferous limestones in the SE midlands of 
Ireland, showed en Echelon veins with a range of vein- 
array angles from approximately 5 ° to 55 ° . He attributed 
arrays with d < 27 ° to the mode I-III breakdown of 
dilatant parent fractures into en Echelon segments after 
Pollard et al. (1982). All other arrays were considered to 
be a result of shear zone formation, but the diagnostic 
features associated with either mechanism were not 
abundant. Rothery stated "the majority of arrays 
sampled provide no clear evidence of having developed 
from a parent extensional crack or from a zone of 
localized shear strain" (1988, p. 67). Thus, his interpre- 
tation, as that of many others, relied almost exclusively 
on the magnitude of vein-array angles and their inferred 
genetic link with the two different mechanisms of origin. 

The foregoing summary of previous work exemplifies 
the long-running controversy concerning the interpre- 
tation of en Echelon veins. It should be clear to anyone 
familiar with this literature that more than one mechan- 
ism can produce en Echelon veins. Since field obser- 
vations and theory suggest different mechanisms result 
in similarly shaped veins, interpretations based solely on 
limited aspects of vein geometry (i.e. the magnitude of 
vein-array angles or the presence of conjugate arrays) 
can be problematic. In addition, fracture analyses based 
upon homogeneous stress field representations (such as 
those done with Mohr circles and Mohr-Coulomb fail- 
ure envelopes) are almost certainly inadequate because 
of the strong dependence of fracture propagation direc- 
tion on the highly heterogeneous local stress fields 
typical of fracture tips. 

A new  perspect ive  

In this paper, we advocate an approach for interpret- 
ing en Echelon vein arrays based on the solutions of the 
appropriate boundary and initial value problems of 
continuum mechanics. Inherent in these solutions are 
the explicit relationships among the displacement, 
strain, and stress fields lacking in much of the previous 
work. We also propose a new mechanism for the forma- 
tion of some en Echelon vein arrays based upon numeri- 
cal experiments in which opening fractures grow as 
governed by the principles of fracture mechanics. This 
single mechanism can account for the full range of vein- 
array angles reported in the literature (approximately 
0-55 ° ) and brings into question interpretive methods 
which have used these angles as the primary evidence for 
distinguishing other mechanisms of origin. 

Whereas previous analytical methods, most utilizing 
the Mohr diagram, dealt only with the homogeneous 
stress state in a body prior to fracturing, the proposed 
mechanism is supported with modeling that explicitly 
includes the fractures and their resultant heterogeneous 
fields. With this modeling we reproduce commonly 
observed features, such as sigmoidal vein shape, shear 
displacements across veins, and en Echelon arrays, as by- 
products of remote loading that is constant in orien- 
tation and purely extensional. We illustrate why an en 
Echelon zone with a particular vein-array angle, c5, does 
not necessarily imply the existence of a shear zone or a 
mixed mode I-III loading of a parent opening fracture. 
In addition, even where obvious evidence of shearing 
deformation exists, we provide support for the view of 
Roering (1968) that en Echelon veins may sometimes be 
the precursor to, and not the result of, localized shear 
deformation. 

Our work on the proposed mechanism for en Echelon 
veins was foreshadowed by laboratory experiments on 
cylindrical rock specimens loaded in triaxial compres- 
sion in which tensile micro-cracking precedes shear 
failure (Brace & Bombolakis 1963, Peng & Johnson 
1972, Dunn et al. 1973, Hallbauer et al. 1973, Sobolev et 

al. 1978, Wong 1982, Kranz 1983). Direct observations 
and acoustic emission studies demonstrate the micro- 
cracking may be spatially random at first, but crack 
orientation is typically parallel to the maximum com- 
pressive principal stress (Brace et al. 1966, Tapponier & 
Brace 1976, Sangha et al. 1974, Olsson & Peng 1976, 
Kranz 1979). The cracks' orientation is perpendicular to 
the least compressive stress, consistent with their inter- 
preted opening mode origin. Continued axial compres- 
sion of the rock sample is accompanied by the localiz- 
ation of micro-cracks and other deformation features in 
narrow, sometimes conjugate diagonal bands with sub- 
sequent shear rupture across these zones of weakness. 
The formation of the conjugate arrays of axial cracks has 
been attributed to the heterogeneous stress distribution 
caused by the end effects on the specimen (Peng & 
Johnson 1972), and to the mechanical interaction of 
nearby micro-cracks which favors en Echelon growth 
(Dey & Wang 1981). In the latter case, the most prob- 
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able orientation of the array depends upon the distance 
between existing micro-cracks relative to their lengths. 

We postulate that the mechanical interaction of frac- 
tures as outlined by Dey & Wang (1981) can be used to 
explain the development of en echelon arrays at scales 
ranging from laboratory specimens to crustal blocks, but 
we will concentrate on the outcrop scale features of veins 
in this paper. Work at this scale is, in many respects, a 
more straightforward application of the continuum 
methods than the aforementioned micro-crack problem. 
There,  the material heterogeneities due to the granular 
nature of most rock specimens are more pronounced 
than those associated with many rock masses at the 
outcrop scale. Similarly, the material anisotropies com- 
mon to many rock forming minerals often are not found 
at the outcrop scale. Thus, we can justify the simplifying 
postulates of homogeneity and isotropy with more confi- 
dence, while recognizing that these postulates will have 
to be relaxed in some cases. 

FRACTURE-INDUCED STRESS FIELDS 

Consider a uniformly loaded body composed of 
homogeneous and isotropic rock and containing a set of 
fractures. Each fracture will locally perturb the applied 
stress field in a complex manner  (Pollard & Segail 1987), 
but, if a particular fracture is isolated from its neighbors 
by distances that are large compared to the fracture 
lengths, it will be surrounded by and acted upon by a 
spatially uniform field. This so-called remote stress field, 
in conjunction with the internal fluid pressure, controls 
the onset and path of propagation of the isolated frac- 
ture. If the fracture is oriented perpendicular to the 
minimum compressive stress of this remote field, it will 
open in pure mode I when its internal fluid pressure 
exceeds this stress component.  The fracture will propa- 
gate along a straight path when the stress concentration 
at its tip exceeds the rock strength. 

In contrast,  if the fracture in question is not isolated 
from its neighbors, the stress perturbations induced by 
nearby fractures will influence the onset and path of 
propagation. We refer to these effects as mechanical 
fracture interaction. Because both normal and shear 
stress components  can be induced on the fracture plane 
by neighboring fractures, the resulting loading may not 
be pure mode I and the propagation path may not be 
straight. To understand the nature of fracture inter- 
action, it is helpful to examine the stress field induced by 
a single fracture after subtracting out the effects of the 
uniform remote  field using the principle of superposition 
for linear elasticity (Timoshenko & Goodier  1970, 
p. 243). Figure 5 shows the fracture-induced contri- 
bution to the normal stress component,  (Yyy, about an 
isolated, pressurized fracture (Pollard & Segall 1987). 
The stress contours are normalized by the magnitude of 
the difference between the fluid pressure in the fracture 
and the remote minimum compressive stress. This 
difference is referred to as the driving stress (Pollard & 
Segall 1987). The variations in magnitude of Oyy will 

Fig. 5. Distribution of crack perpendicular stress, Cryy, induced by a 
fluid-pressurized crack. Contours are labeled with stress magnitude 
normalized by the fluid pressure (tension is positive). Crack-induced 
stress is tensile in front of the crack tips and compressive to either side 

of the crack. 

influence the growth of nearby fractures that are parallel 
to the perturbing fracture. 

For  a given distance from the fracture tip (away from 
the near-tip region), the maximum value of Oyy occurs 
along lines approximately +45 ° ahead of the crack. If we 
postulate the existence of a population of randomly 
located micro-cracks parallel to the maximum compres- 
sive stress and to the 'master '  fracture of Fig. 5, we 
would expect preferential growth of those microcracks 
located along diagonal lines ahead of the tip of the 
existing master fracture, forming an en echelon array. 
Many examples of en echelon arrays apparently grow in 
the absence of the stress perturbation of a larger master 
fracture and form approximately equal-sized veins. 
Using numerical experiments,  we will show how mech- 
anical interaction can have a controlling influence on 
fracture propagation patterns from a random distri- 
bution of comparably sized flaws and favors the growth 
of en echelon arrays. 

RESULTS FROM NUMERICAL EXPERIMENTS 

We performed numerical experiments modeling the 
growth of opening fractures for various initial geom- 
etries in order  to test the hypothesis that interaction will 
favor en echelon array formation. The experiments were 
done using a two-dimensional, plane strain boundary 
element  computer  code (modified from Crouch & Star- 
field 1983) incorporating a linear elastic fracture propa- 
gation criterion (Erdogan & Sih 1963, Ingraffea 1981). 
All modeled fractures were divided into displacement 
discontinuity elements (dislocations) of constant length 
(here designated one length unit), with an additional 
element of the same length added at the fracture tip for 
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each propagation increment. Each element  can sustain a 
constant normal and/or tangential displacement discon- 
tinuity which corresponds to the opening or shearing of 
that portion of the fracture. 

Propagation force for en ~chelon veins 

We examine a single en 6chelon array of straight 
fractures to illustrate the controlling parameters  of frac- 
ture growth. The loading at the fracture tip is summar-  
ized by the fracture propagation force, G, and is calcu- 
lated as a function of the mode I (opening) and mode  II  
(shearing) stress intensity factors, KI and KII. The stress 
intensity factors measure the stress concentration at the 
fracture tip, and depend upon the fracture geometry  and 
applied loading conditions. For  an isolated, straight 
fracture (Fig. 6), the expressions for the fracture propa-  
gation force and stress intensity factors take on a simple 
form (Lawn & Wilshaw 1975), 

1 .K2 o = , + (1 )  

KI = AOI ~ (2) 

K n = Aon ~/~na, (3) 

where a is fracture half-length, E is Young's  modulus,  
and the driving stresses, hOl and AOlx, are defined as 

r c ( 4 )  = Oyy --  ~yy  

r _ c 
AO'II = Oxy Oxy.  ( 5 )  

The superscripts r and c refer to remote  and crack face 
stresses, respectively (tension is positive and fluid press- 
ure is negative). Pure mode I opening of the fracture 

r c results when Oyy > Oyy (e.g. internal fluid pressure 
exceeds remote  compressive stress or the remote  normal  

c = 0. Pure mode II  stress is tensile) and Oxy = (Yxy 
r c and r = c (e.g. net shearing occurs when Oxy 5 ~k Oxy Oyy O'yy 

shear exceeds frictional strength across a closed frac- 
ture). Mixed mode  I - I I  deformation,  involving a combi- 
nation of opening and relative shearing displacements of 
the fracture walls, is the expected general case because 
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Fig. 6. Definition of  stress componen ts  for an isolated fracture in an 
infinite body. oxxr and Oyyr are the  remote  normal  stresses, O~y is the 
remote  shear  stress,  o~y is the uni form normal  traction acting on the 

c is the uni form shear  traction on the crack face. crack face, and axy 
Driving stress for opening mode  crack propagat ion is defined as AoI = 
(Oyy c r -- Oyy). All stresses shown have a positive sign, thus remote  

tension is positive and pressure  in the  crack is negative. 
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Fig. 7. Crack propagation ratio, G/G i, plotted against vein-array 
angle, 6, for various normalized separations, S/L (see Fig. 2). G/Gi > 1 
indicates enhanced fracture propagation due to interaction, G/G i < 1 
indicates hindered crack propagation. A collinear array has a vein- 

array angle of 6 = 0 °, and a stacked array has ~ = 90 °. 

mechanical  interaction will induce normal  and shear 
stresses on neighboring fractures. Mixed mode  loading 
may  result in curved propagat ion paths and complicated 
fracture wall displacement histories, as the fracture tip 
will tend to grow perpendicular  to the orientat ion of the 
local least principal stress. 

The  elastic fields were calculated for en 6chelon arrays 
containing five straight, fluid pressurized fractures with 
various center- to-center  separations to determine the 
opt imal  f racture-array angle, 6 (see Fig. 2). The  remote  
boundary  conditions were constant isotropic stress. The  
ratio of  fracture separat ion to length, S/L ,  ranged f rom 1 
to 10. The fracture propagat ion force, G, for the middle 
m e m b e r  of a five fracture array is normalized by G i, that 
for an isolated fracture of the same length. This normal-  
ized value will be called the 'propagat ion rat io '  and 
allows us to judge whether  propagat ion is enhanced,  
G/Gi  > 1.0, or hindered G/Gi  < 1.0, due to fracture 
interaction for the specified geometry.  

The  opt imal  vein-array angle for a particular separ- 
ation, S /L ,  is indicated by the maximum value of G/Gi  
(Fig. 7). For  S / L  = 1, the optimal configuration is at 6 = 
0 ° due to the tip-to-tip linking of fractures. The  optimal  
angle for S / L  = 1.5 is an array with 6 = 20 ° and a 
propagat ion ratio of about  1.8. The propagat ion ratio 
drops quickly f rom this peak  value to a min imum of 
about  0.6 for 6 = 90 °, a configuration we will term a 
' s tacked '  array. The lowest propagat ion ratio was about  
0.4 for S / L  = 1.0 and 6 = 90 °. As separat ions increase, 
the opt imal  angle increases to a maximum of approxi- 
mately 30 ° for S / L  = 3 and S /L  = 10. In general,  
however ,  for all arrays with 6 less than about  50 ° the 
propagat ion ratio is greater  than 1.0 and thus growth 
would be enhanced due to mechanical interaction. The 
opposi te  is true when 6 is greater  than about  50°; for 
these geometr ies ,  fracture interaction would hinder 
growth. 

The  effects of  separat ion on fracture interaction are 
evident by compar ing the results for the various S /L  

SG 1 3 : 5 - G  
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ratios in Fig. 7. Interaction effects are most significant 
for fractures with the smallest separations because this 
geometry brings the two near-tip stress concentrations 
closest together. As separations increase, the maximum 
and minimum values for the propagation ratios are 
closer to 1 and the curves are flatter. The results show 
enhancements of the propagation ratio for the optimal 
array relative to a stacked array of 300,180 and 40% for 
S/L of 1.5,2 and 3, respectively. The results for S/L = 10 
show that fracture arrays of all orientations behave 
almost as if the fractures were isolated. 

Another parameter affecting propagation force is 
fracture length. Since G increases linearly with length, 
given similar loading, longer fractures are always 
favored for growth over shorter ones. Because fractures 
in certain en 6chelon geometries have a greater G due to 
interaction effects (Fig. 7), these fractures will grow first 
and will be favored for further propagation due to a 
greater length. Longer cracks also cast stronger and 
more extensive compressive stress shadows (Fig. 5), 
hindering shorter cracks to their sides from propagating. 
We propose that this complex mechanical interplay 
favors the initiation ofen 6chelon arrays and explains, in 
part, why they are so common. The great resistance to 
further growth of overlapped 6chelon fractures (Pollard 
et al. 1982, fig. 12a) explains why so many arrays are 
'frozen' into the rock record. 

Vein-array angles 

To evaluate the importance of en 6chelon array initia- 
tion due to mechanical interaction, we performed nu- 
merical model experiments using randomly located, 
equal-length, parallel fractures. The initial fractures 
were 0.1 m in length and were divided into 0.05 m 
boundary elements. Subsequent growth on the fractures 
was in 0.05 m increments at either tip. The surface area 
of the representative volume of fractured rock was 
100 m 2. A set of 100 experiments was performed, half 
with 50 starting fractures and half with 100 starting 
fractures representing initial fracture densities of 
0.00125 and 0.00250, respectively (Segall 1984). Differ- 
ences in the amount of fracture propagation between 
fractures of a given experiment can be attributed solely 
to the effects of mechanical interaction. The amount of 
total fracture growth in an experiment was limited by 
available computer time and memory, so the models 
with higher initial fracture density have, on average, 
shorter final fracture lengths. A typical experiment con- 
sumed about 100 cpu minutes on a Gould 9080, a 
computer rated at 10 MIPS. 

The stress boundary conditions used for the numerical 
r = -20  MPa, models consisted of arx = -21 MPa, Oyy 

Oxyr = 0 MPa, ayyC = -24.7 MPa, a n d  OCxy = 0 MPa. This 
results in a differential remote compression of 1 MPa 
parallel to the starting fractures, and a driving stress of 
4.7 MPa. These are stresses that might be representative 
of in situ conditions in the upper 2 km of the Earth's 
crust. Numerically, propagation involved adding a 
single boundary element per iteration to either end of a 

fracture as specified by the maximum circumferential 
stress theory (Erdogan & Sih 1963). This failure cri- 
terion states that propagation should occur along a path 
across which circumferential tension, Ooo, near the crack 
tip is maximized and resolved shear stress, Oro, is zero 
(Fig. 8). At each iteration the incremental propagation 
direction, 0, is defined by the equation 

K I sin 0 + Kn(3 cos 0 - 1) = 0. (6) 

A fracture propagates when the stress intensities and 
propagation angle satisfy the inequality 

0(  0 3  ) 
cos KI cos 2 2 - -  - -  ~ KII  sin 0 -> K i c  , (7) 

where Klc is a material property called the fracture 
toughness (Lawn & Wilshaw 1975). For these experi- 
ments, we used a fracture toughness of 1.9 MPa-m 1/2, a 
representative laboratory determined value for sedi- 
mentary rock (Atkinson & Meredith 1987). 

Two fracture patterns (Figs. 9a & b) from different 
starting populations clearly illustrate the effects of frac- 
ture interaction. Not all of the fractures grow in any 
particular experiment. For example, interaction pre- 
vented growth for some closely spaced stacked arrays 
(Fig. 9a, areas a & b; Fig. 9b, area a). Also, a lack of 
interaction because of the great spacing prevented some 
en 6chelon pairs from propagating (Fig. 9b, areas b & c). 
On the other hand, en 6chelon arrays with a wide variety 
of angles 6 did grow (Fig. 9a, areas c-e; Fig. 9b, areas d 
& e). Since the driving stress for these experiments was 
large relative to the fracture-parallel differential com- 
pression, fracture path curving occurred in places where 
nearby fractures overlapped (Olson & Pollard 1989). 
This gave a sigmoidal shape to some of the fractures 
(Fig. 9a, areas c & d; Fig. 9a, areas d & e). 

We have summarized the results of all 100 numerical 
experiments and quantified the vein-array angular re- 
lationships that promote and hinder fracture growth by 
measuring the normalized separations, Si]Lo, and vein 
array angles, 6i, for all neighboring fracture pairs (Fig. 
10). Here we define the neighborhood of a particular 
fracture as the circular area centered on the fracture with 
a radius of 10 times the starting fracture length, L o. 
Figure 11 shows the total number of possible fracture 
pairs within 5 ° increments over the range of 0 ° -< 6 -< 90 ° 

N e a r - t i p  s t ress  
componen ts  

~ ~ ' ~  0 

Frac tu re  

Fig. 8. Maximum circumferential stress criterion of Erdo an & Sih 
(1963). Fractures propagate radially from the crack tip at angle 0 along 
a path of maximum circumferential stress, ooo, and zero shear stress, 

O rO. 



En Echelon veins 601 

O 

S 

-S 

b 

f 

I I I _ 

-S 0 S 

b 

S - 

- - - . m _ _  - -  

C _ - -  

r - -  

I I 1 

-S 0 S 

Fig. 9. Fracture patterns generated from I00 randomly located, 
parallel starting, fractures of equal length. The  two pat terns were 
generated from different initial fracture distributions. All cracks 
experienced the same remote  stress and internal fluid pressure,  but  
crack interaction caused some to grow and prevented  others.  Boxed 
regions highlight en Echelon and stacked arrays referred to in the text. 
(a) Areas  a and b show how stacked arrays are prevented from growth 
due to hindering interaction, and areas c -e  show how en Echelon 
arrays are favored for growth. (b) Area  a exhibits a non-growing 
stacked array. Areas  b and c show en Echelon arrays with fractures that 
are too widely separated to cause sufficient constructive interaction to 
cause growth, while the more  closely spaced en Echelon fractures of d 

and e do grow. 

for the three specified ranges of S/Lo. Fracture pairs 
with 90 ° < 6 < 360 ° are included in the 0-90 ° range using 
the two-fold symmetry of the stress field around an 
isolated fracture (Fig. 5). Spatial randomness for the 
starting fractures resulted in a wide range of crack 
separations, and the possible vein-array angles are dis- 
tributed evenly throughout the range of orientations. 

Using the tally of possible pairs and the results of the 
numerical experiments, we calculated the percentage 
that actually grew within each population defined by the 

Fig. 10. Fractures from numerical  exper iments  (e.g. Fig. 8) are 
grouped into pairs that  have a separat ion,  Si, and a fracture-array 
angle, 6i. Fractures are paired only with their nearest  neighbors,  those 

within a radial distance of 10 s tar ter  fracture lengths,  L o. 

6 and S/Lo ranges in order  to determine whether open- 
ing mode fracture growth favored en Echelon array 
development.  In general,  Fig. 12 shows that arrays with 
6 < 50 ° are favored for growth relative to arrays with 6 > 
50 °. For arrays with small separations (S/Lo < 5) and 
modest vein-array angles (6 < 45°), the percentage of 
fractures that grew is very high (75-100%). The percent- 
age of growing fractures with 6 > 70 ° drops below 30% 
for all separations. For  6 < 55 ° it is evident that increas- 
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Fig. 11. Total n u m b e r  of  fracture pairs for given ranges of separation, 
S/Lo, and 5 ° increments  of  fracture-array angle. (a) Fracture pairs for 
the exper iments  using 50 starter  fractures.  (b) Fracture pairs for the 

exper iments  using 100 starter  fractures. 
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separat ions S/Lo. (a) Results of the numerical exper iments  using 50 
starter  fractures. (b) Results of the numerical  exper iments  using 100 

starter fractures. 

ing separation diminishes positive interaction effects 
that promote  growth. The similarity between the 50 and 
100 fracture experiments as compared in Figs. 12(a) & 
(b) indicates that fracture density did not significantly 
affect the results. Also, although not depicted here,  
o ther  numerical experiments indicate that the type of 
loading conditions applied to stimulate fracture growth, 
whether  constant stress or constant displacement, do not 
alter the fracture-array angle results appreciably. 

The analysis of five en 6chelon fractures (Fig. 7) 
indicates a rather sharp cut-off at about 6 = 50 ° separat- 
ing favored and unfavored configurations, whereas the 
numerical experiments with random fractures suggest a 
range of cut-off angles from about 45 ° to 55 ° . Like those 
cases of Fig. 7 with greater separation, the random 
fracture growth curves of Fig. 12 are fairly flat for 0 ° < 
< 45 °. However ,  the random models show a stronger 
growth hindrance than is implied by the results for the 
five fracture array. This may be explained by the fact 
that a finite fracture strength was employed in the 
random models. Since the applied loading was raised 
only to the level that caused the most favorably situated 
fractures to grow, even very small negative interaction 
inhibited other  fractures,  thus skewing the results 
toward lower percentages for 6 > 50 °. 

Fig. 13. The  initial flaw geometry for the numerical  exper iments  
illustrating how sigmoidal fracture shapes  can evolve independent  of a 
shear  zone.  Initial stress boundary conditions are defined in the text. 
The  incremental  uniaxial strain in x due to the imposed boundary 

displacements ,  e~x = 3.1 × 10 -4, starts fracture propagation.  

Sigmoidal veins 

Pollard et al. (1982) and Nicholson & Pollard (1985) 
have suggested that the sigmoidal shapes of veins in en 
6chelon arrays can result from their curved propagation 
paths as influenced by mechanical interaction, so these 
shapes do not require the finite strain and rotation of a 
shear zone (Fig. lb).  This fact is clearly demonstrated 
using the elastic fracture propagation model.  We exam- 
ine fracture propagation in a representative volume cut 
out of a homogeneous,  linear elastic body with a cross- 
sectional area of 1 m e. The initial fracture geometry 
(Fig. 13) is an en 6chelon array with flaw length L = 
1 cm, spaced at S = 5 cm, and with a fracture-array 
angle, 6 = 50 °, a value just within the favored array 
geometry cut-off of Fig. 12. The initial remote  stresses 
are compressive, isotropic and of constant magnitude 

= = = c = 0). The r r = O, c _ p ,  Gxy ((Trxx - - p ,  O yy - p ,  tTxy f f  yy 

internal fluid pressure, p,  is equal to the remote  stress 
magnitude and stays constant throughout  fracture pro- 
pagation. The physical properties are representative of a 
limestone, with Young's modulus E = 60 GPa,  a Pois- 
son's ratio v = 0.25 (Clark 1966), and a fracture tough- 
ness of 2.7 MPa-m 1/2 (Atkinson & Meredith 1987). 

Fracture propagation is started by imposing a fixed 
normal displacement of 0.0155 cm on the boundaries 
of the body in x and zero displacement y (Fig. 13). 
The values of the applied remote strains resultant from 
the imposed displacements at the edges of the body are 

r r egg = e~ = 3.1 x 10 -4, 6yy = 6 ~  = 0, and )'~nax = (e~ - e~) 
= 3.1 x 10 -4. This results in a crack tip stress intensity of 
2.76 MPa-m x/2 which satisfies the propagation criterion. 
The shear stress on the bounding surfaces was main- 
tained at zero so the body could freely expand in the x 
direction in response to the applied normal displace- 
ments. Figure 14 illustrates the sequence of fracture 
propagation at three different stages. Initial fracture 
growth is essentially perpendicular to the applied exten- 
sion (Fig. 14a), but as the fractures overlap and interact, 
their propagation paths deviate from planar to sigmoidal 
shapes (Figs. 14 b & c). Subsequent growth is not aligned 
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neighbors can be deduced by looking at the tick marks in 
Fig. 15(a), which show the direction of the maximum 
principal extension, e~. 

Given that we know the fracture array of Figs. 13-15 
grew in response to the deformation of an elastic solid, 
we can make several generalizations useful for the field 
interpretation of these types of structures. The remote 
principal strain and stress orientations are recorded only 
by the central portions of the fractures which propagated 
prior to significant mechanical interaction with other 
nearby fractures. For this numerical experiment, the 
remote principal extension direction was along the x- 
axis, and correspondingly the veins in Fig. 14 initially 
grew perpendicular to that direction. The sigmoidal 
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Fig. 14. Three stages in the growth of sigmoidal fractures under an 
incremental uniaxial extension in x (see Fig. 13). (a) Propagation 
approximately perpendicular to extension along nearly planar paths. 
(b) Curved paths begin as fractures mechanically interact. (c) Final 

sigmoidal shapes. 

perpendicular to the remote applied extension, but is 
controlled by the orientation of the local stress (and 
strain) field. 

Figure 15 depicts components of the local strain field 
near the center of the fracture array at stage 2 in the 
growth sequence. The strain field is non-homogeneous 
in space and time due to the presence of the propagating 
fractures, although the remote strains near the bound- 
aries of the body are constant. Each increment of propa- 
gation is perpendicular to the maximum circumferential 
stress near the fracture tip, which corresponds to the 
maximum circumferential extension for our case of 
infinitesimal strain. For example, continued propaga- 
tion of the fractures along curving paths toward their 
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Fig. 15. Certain components of the strain field near en ~chelon 
fractures at stage 2 of the growth sequence shown in Fig. 14. These 
figures illustrate the heterogeneous nature of these fields. (a) Trajec- 
tories of maximum principal strain, e~. (b) Magnitudes of el (multi- 
plied by 104). (c) Magnitudes of the maximum shear strain, Xmax 

(multiplied by 104). 
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Fig. 16. En 6chelon fracture zone taken from stage 2 of the brittle 
elastic process illustrated in Fig. 14 and used here to compare the 
displacement and strains with those from a ductile shear zone contain- 
ing a similar array of fractures. Displacement components of point B 

relative to point A are u n and u t. 

shapes of the fractures after overlap do not reflect 
changes in the remote strain field but indicate that the 
differential compressive stress acting parallel to the 
initial fractures was not very large compared to the 
driving stress available for propagation,  Aal (Olson & 
Pollard 1989). In addition, if minimum fracture opening 
displacements are recorded by mineral fillings, we can 
estimate the ratio of the driving stress to the elastic 
moduli of the material, E and v, using the equation for 
opening displacement at the center of an isolated frac- 
ture, 

1 - v 2 AU I 
Aai = 4 a '  (8) 

where Au I is the opening displacement at the vein center 
and a is the vein half-length. If the elastic moduli can be 
estimated for the time of fracturing, we can actually 
calculate the magnitude of the driving stress, as has been 
done for joints (Segall & Pollard 1983) and dikes (Dela- 
ney & Pollard 1981, Pollard 1987). If the material 
properties during fracture propagation were not elastic, 
a similar analysis could still be done with continuum and 
fracture mechanics, but the constitutive laws would be 
different. For  example,  there are solutions in the engi- 
neering mechanics literature for fracture growth in vis- 
coelastic materials (Graham 1969, Knauss 1974, Scha- 
pery 1975a,b) that might be applicable for cases 
involving larger strains and wider vein openings than 
those considered here. 

Comparison of sigmoidal fracture analysis methods 

Since the fracture array depicted in Fig. 16 (redrawn 
from Fig. 14b) is geometrically similar to some vein 
arrays attributed to shear  zone deformation,  and 
remembering that independent  evidence confirming 
vein formation mechanism is often lacking (Shainin 
1950, Rothery  1988), it is conceivable that vein arrays 

formed by brittle elastic fracture propagation might be 
misinterpreted using techniques for ductile shear zones 
and vice versa. An analysis follows to show the magni- 
tude of the quantitat ive errors involved if the controlling 
deformation mechanism is not recognized. 

We define the deformat ion zone as the extent of the en 
6chelon array, giving a zone width of about 6.4 cm 
(Fig. 16). Relative to point A on the lower boundary of 
the zone, the displacement components  of point B are 
u n = 5.12 X 10 -3 cm (normal) and u t = 4.79 x 10 -3 cm 
(tangential). The  shear strain parallel to the zone is 
calculated from the tangential displacement and zone 
width as 

4.79 x 10 -3 cm 
= 7.48 x 10 -4. (9) 

= 6.4 cm 

The resultant shear strain parallel to the zone in the 
remote field is 1.53 x 10 -4, showing that the defor- 
mation is increased in the vicinity of the fracture array. 

If we look only at the central portions of the fractures 
and mistakenly interpret  that they rotated passively as 
lines during ductile shear deformation,  we will calculate 
an incorrect shear  strain accommodated in the zone 
since fracture initiation. Shear strain, ~ = cot a - cot a ' ,  
is related to the rotat ion of a line segment in homogene- 
ous simple shear (Ramsay & Huber  1983, p. 24), where 
a is the original angle between the line and the shear 
zone boundary and a '  is the final angle of the rotated 
line. Shear strain is positive for anticlockwise rotation 
and negative for clockwise. According to the simple 
shear model,  fractures formed during the initial incre- 
ment of shear displacement would be oriented perpen- 
dicular to the maximum extension, that is at a = 45 ° for 
this left-lateral zone. From Fig. 16 the passive rotation is 
5 ° in the anticlockwise direction (a '  = 50°), resulting in a 
shear strain of 

= cot45  ° - co t50  ° = 0.161. 

This is over two orders of magnitude greater than the 
shear strain calculated for the brittle elastic zone. 

Lajtai (1969) suggests that the orientation of the 
remote maximum principal compressive stress can be 
inferred to be parallel to the tips of sigmoidal veins 
where these veins have propagated outside the bound- 
ary of a shear zone. Durney  & Ramsay (1973, Fig. 15) 
reiterate this idea and describe how progressive defor- 
mation in a shear zone causes passive rotation of the vein 
body while propagat ion at the tip continues perpendicu- 
lar to the incremental  stretch direction, that is at 45 ° 
from the zone boundary.  However ,  the orientation of 
the fracture tips in Fig. 16 are at 24 ° to the zone 
boundary,  and 26 ° f rom the remote  maximum principal 
stress orientation used to generate the fracture array. 

Ramsay & H u b e r  (1983, pp. 48-50) suggest that a 
combination of homogeneous  simple shear and dila- 
tation (actually they impose a longitudinal strain per- 
pendicular to the shear zone boundary) can be used to 
explain veins that are initially oriented at an angle 
different from 45 ° or 135 ° in left- or right-lateral shear 
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Fig. 17. Fracture path and elastic wall displacements for a fluid-pressurized fracture experiencing a fracture-parallel 
differential compressive stress equal to one-tenth the driving stress. Closed contours A-E denote positions of the fracture 
walls at five stages of growth. Transverse lines cross-cutting fractures show the opening and shearing displacement paths of 

initially adjacent points on opposing fracture walls. 

zones, respectively. Addition of a positive dilation (ex- 
tension across the zone) rotates the strain ellipse such 
that the maximum extension is at a greater  angle to the 
zone boundary. A negative dilation (contraction across 
the zone) results in a lesser angle. By equating the strain 
ellipse's long axis with the normal to extension fractures 
they interpret en 6chelon arrays with 6 < 45 ° as indi- 
cating positive dilation and those with d > 45 ° as indi- 
cating negative dilation for left lateral shear zones. They 
give numerical examples for d = 24 ° and d = 69 ° that 
arise from a shear strain, ), = 0.1, and dilations of A a = 
+0.1 and A g = - 0 . 1 ,  respectively. This relationship 
between dilation and vein angle does not hold for the 
example of Fig. 16. Assuming no stretching in the 
direction parallel to the zone, the area change (dilation) 
is 

AA = 5.12 × 10-4 cm = 8 X 10 -4. 
6.4 cm 

Not only is the strain orders of magnitude smaller than 
those for the ductile shear zone example,  the sign of the 
dilation is the opposite of what is predicted by Ramsay & 
Huber  (1983) for veins with 6 > 45 °. In addition, the 
fracture geometries of Fig. 9 illustrate how 6 can range 
from near 0 ° to over 50 ° (Fig. 12) in a body subject to a 
single remote stress and strain field. The variation in 
vein-array angle for the case of brittle elastic fracture 
propagation depends on the spatial distribution of the 
initial flaws and their mechanical interaction during 
growth. 

It should be clear from this comparison that significant 
quantitative errors can result from the use of either 
model if it has been incorrectly applied to a natural 
fracture array. 

Fibrous vein fillings 

Durney & Ramsay (1973) and Ramsay & Huber  
(1983, fig. 13.1) suggested that the displacement of 

fracture walls as indicated by fibrous vein fillings can be 
used to infer the progression of incremental strain axis 
directions during fracture growth. Sigmoidally shaped 
syntaxial and antitaxial vein fibres track fracture wall 
opening and shearing displacements. Our next example 
investigates the use of sigmoidal vein fillings to infer 
fracture wall displacements and then to interpret the 
direction of the incremental  strain axes. 

To illustrate the role of mechanical interaction on 
fracture wall displacements, we consider two parallel en 
6chelon fractures that propagate toward one another 
and overlap, following a convergent  propagation path as 
determined by the fracture tip stress field (Pollard et al. 
1982, Olson & Pollard 1989). The remote strain (and 
stress) state was constant in orientation with principal 
axes parallel to x and y. The remote  strain (and stress) 
magnitudes were also constant throughout  propagation, 
with a constant compressive differential stress along the 
x axis equal to one-tenth the 1 MPa driving pressure. 
Therefore ,  any shear offset of fracture walls or propaga- 
tion path curving is not  the result of changes in the 
orientation of the remote  principal strain axes, but a 
response to the heterogenei ty  of the local strain due to 
mechanical interaction of the two fractures. 

Figure 17 shows the location of the fracture walls at 
five different stages ( A - E )  during the numerical experi- 
ment. The elastic opening has been exaggerated for 
illustration purposes by using a small Young's modulus, 
E = 25 MPa, three orders of magnitude less than what is 
typically expected for most rock. The transverse lines 
are displacement vectors that track the movement of 
previously adjacent points on the fracture walls. Initially 
(stage A), both fractures follow straight paths and the 
wall displacements are nearly pure opening because the 
fractures are symmetric with respect to the remote strain 
field and too far apart relative to their lengths to interact 
significantly. In the second stage of growth (B), the inner 
tips curve toward one another  signalling the beginning of 
fracture interaction. The  walls now exhibit a small shear 
offset at the center  of each fracture,  but the displace- 
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ment near the tips is still pure opening. Further left- 
lateral offset at the fracture center occurs during growth 
stages C and D, as the inner tips follow a smoothly 
curving convergent path. Growth stage E signals a 
change in the propagation path as the inner tips begin to 
curve in the opposite sense. This has a curious effect on 
the wall displacements--the incremental shear offset 
changes to right-lateral for most of the overlapping 
portion of the fractures, indicating a change in the sense 
of the local fracture-induced shear resolved on the 
overlapping fracture segments. 

The results of Fig. 17, we suggest, are an analog for 
antitaxial fibre growth accompanying the propagation 
and dilation of veins. The displacement vectors record a 
complex history that reflects significant changes in the 
local strain (and stress) state due to mechanical inter- 
action. If mineral fibres were to grow parallel to these 
vectors their long dimensions would have to rotate as 
much as 20 ° from the middle to the wall of the vein. The 
fibers near the vein tips would be straighter than those at 
the center, a geometry that has been observed in natural 
veins (Ramsay & Huber 1983, figs. 13.14 and 13.15). It is 
important to note that although this example has curving 
vein traces, Pollard et al. (1982) showed that similar 
shear offsets of the fracture wall can occur in overlap- 
ping fractures that follow straight paths. Using a more 
realistic rock modulus (of the order of 105 MPa) to 
calculate the deformations in Fig. 17 would have no 
effect on the fracture propagation paths. The fracture 
wall displacements would have the same proportion of 
opening to shearing, but the magnitudes would be 
greatly diminished. These displacements are inversely 
proportional to elastic modulus. 

It should be clear from this example that there is no 
necessary correspondence between vein fiber orien- 
tation or fracture tip orientation and that of the remote 
incremental strain axes. In this case only the early stages 
of vein propagation and opening are aligned with the 
remote principal strains. We have also shown that the 
rotation of the remote principal strain or stress com- 
ponents is not a necessary condition for sigmoidal vein 
features. The remote field and that induced by the 
fracture interaction combine to determine the propaga- 
tion direction and wall displacement history. 

DISCUSSION 

We propose the following model for en Echelon vein 
array development. The rock mass has local points of 
stress concentration caused by flaws and heterogeneities 
that are randomly located and oriented (Fig. 18a). 
Pollard & Aydin (1988) describe a variety of such stress 
concentrators typically found in rock and explain why 
fractures that initiate at these points will grow preferen- 
tially perpendicular to the least compressive remote 
(regional) stress. Due to the action of these pre-existing 
flaws, a population of randomly distributed but sub- 
parallel micro-cracks develop in the rock body (Fig. 
18b). Fluids in the rock mass may fill these fractures and 

deposit minerals to form veins. As the veins become 
long enough to mechanically interact with one another, 
growth becomes more selective, causing the members of 
stacked arrays to slow or stop while members of en 
Echelon arrays experience enhanced growth (Fig. 18c). 
Veins with 6 < 50 ° would start growing at approximately 
the conditions depicted by the curve for S / L  o = 10 (Fig. 
12) and move to greater propagation ratios as S/Lo 
decreases. In contrast, for 6 > 50 °, decreasing S/Lo  
ratios correspond to decreasing propagation ratios. 
Thus, the rock mass is cut by veins of various lengths and 
positions, but many of them occur in en Echelon arrays. 

En Echelon arrays may be zones of weakness in the 
rock body (Fig. 18d), depending on the nature of the 
vein filling minerals, and, as such, they would localize 
subsequent deformation. The array could enhance 
strain by lowering of the rock's shear modulus (Lajtai 
1969, Casey 1980). The deformation could consist of the 
buckling of inter-vein columns of rock analogous to 
deformation observed in laboratory specimens (Peng & 
Johnson 1972) or in kink bands (Segall & Pollard 1983). 
Through fracturing between en Echelon veins, defor- 
mation could cause the formation of small faults whose 
length would increase as more en Echelon fractures link 
up (Roering 1968, Segail & Pollard 1983, Martel et al. 
1988). Ductile shear zones might also form, utilizing the 
weakened zone of an en Echelon array and passively 
rotating pre-existing veins into a sigmoidal pattern 
(Roering 1968). 

We have reviewed the two existing mechanisms for en 
Echelon vein formation and introduced a third. In prin- 
ciple, the different deformation mechanisms can be 
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Fig. 18. Vein growth sequence. (a) Randomly located and oriented 
grain-scale flaws in a rock mass. (b) Flaws grow into micro-cracks 
that align perpendicular to the least compressive principal stress. 
(c) Fractures become long enough relative to their separation to 
interact, and selective vein growth due to this interaction favors the 
development of en 6chelon arrays. (d) Subsequent (more severe) 
deformation may modify the vein configuration of C by localizing 
shearing along pre-existing zones of weakness defined by en ~chelon 

arrays. 
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distinguished by careful observations when guided by 
model studies of the kind described here. Accurate 
interpretation of en 6chelon veins relies upon the identi- 
fication of diagnostic structural features that can be 
linked with one of these mechanisms. For example, a 
finite shear strain will leave evidence of shear offset if 
any markers cross the boundaries of the zone, but such 
markers are often absent. Breakdown of a parent frac- 
ture into en 6chelon segments can be confirmed by 
locating the parent fracture, yet this is often difficult 
because of the two-dimensional nature of many out- 
crops. A wide range of vein-array angles for en 6chelon 
veins with contemporaneous sub-parallel isolated veins 
in the same region supports the mechanism of selective 
opening fracture growth from random flaws, but timing 
relationships are often difficult to establish. 

The possibility of multiple episodes of veining in 
response to differently oriented principal strains may 
complicate interpretations considerably, so it is import- 
ant to determine the relative ages of all fracture sets and 
examine those of different ages separately. Determining 
the timing of finite deformation relative to the onset of 
vein growth also is important, as the possibility exists 
that en 6chelon veins form early and provide zones of 
weakness along which later deformation is localized. 
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